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Abstract—This study explores Long Short-Term Memory
(LSTM) neural networks for sentiment analysis, with a focus
on IMDB movie reviews. The demand for advanced sentiment
analysis tools in the era of online content has led to exploring
deep learning techniques capable of comprehending and
categorizing subjective text. LSTM, a variant of recurrent
neural networks (RNN), addresses the limitations of traditional
methods by effectively capturing long-term dependencies and
contextual nuances within text. Leveraging the IMDB dataset
from tensorflow.keras.datasets, consisting of 50,000 reviews, we
preprocess the data for compatibility with our LSTM model.
The architecture encompasses an embedding layer for
vectorizing tokens, LSTM layers for sequential processing, and
a sigmoid-activated Dense layer for sentiment classification.
Incorporating Bidirectional LSTMs and regularization, our
model demonstrates enhanced performance, culminating in a
test accuracy of 83.26%. This shows LSTM's capability in
navigating the complexities of language for sentiment analysis,
offering significant advancements over conventional
techniques. The success of this study encourages further
application of LSTM in diverse NLP tasks requiring deep
linguistic insights.
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I. INTRODUCTION
The surge in online user-generated content has made

sentiment analysis–a computational exploration of opinions
in text–a key area in natural language processing (NLP).
The field’s applications range from market analysis to health
monitoring [1]. Deep learning, particularly Long
Short-Term Memory (LSTM) networks, has significantly
improved sentiment analysis by capturing the nuances of
human language, essential for understanding sentiments [2].

The Internet Movie Database (IMDB) dataset, with its
50,000 movie reviews, serves as a prime resource for
refining sentiment analysis models, offering a balanced mix
of positive and negative sentiments for analysis [3]. This
study employs LSTM networks on the IMDB dataset to
enhance automated sentiment classification, utilizing
techniques like bidirectional LSTMs for better contextual
understanding and regularization to prevent overfitting
[4][5]. The goal is to accurately classify movie review

sentiments and uncover the linguistic features distinguishing
positive for negative reviews.

II. RELATED WORK

The evolution of sentiment analysis has been significantly
influenced by advancements in machine learning and deep
learning techniques. Early attempts at sentiment analysis
leveraged machine learning algorithms like Native Bayes,
Support Vector Machines (SVM), and decision trees, which
required extensive feature engineering to handle textual data
effectively [6]. These traditional methods, while
foundational, often struggled with the nuances and
contextual dependencies in natural language.

The introduction of deep learning models, especially
Recurrent Neural Networks (RNNs) and their variant, Long
Short-Term Memory (LSTM) networks, marked a shift in
sentiment analysis. LSTMs, designed to overcome the
limitations of short-term memory in RNNs, have shown
exceptional capability in capturing long-range dependencies
with text, making them particularly suited for analyzing
sentiments expressed in sentences or longer texts [2].

Bidirectional LSTMs (Bi-LSTMs) further enhanced the
capability by processing text in both forward and reverse
directions, thereby gaining a more comprehensive context of
the data [4]. This advancement allowed for more nuanced
understanding and classification of sentiments.

The effectiveness of LSTMs and Bi-LSTMs in sentiment
analysis has been demonstrated across various datasets
including the widely used IMDB movie review dataset. The
dataset;s balanced compilation of 50,000 positive and
negative reviews has been a benchmark for evaluating
sentiment analysis models [3]. Researchers have explored
different LSTM architectures, including those incorporating
attention mechanisms and word embeddings like GloVe
(Global Vectors for Word Representation), to further refine
model performance [7].



Moveover, regularization techniques such as
dropout have been used in addressing overfitting, ensuring
that LSTM models generalize well to unseen data [5]. These
developments show the continuous evolution of sentiment
analysis methodologies, from basic machine learning
approaches to advanced deep learning models that offer a
deeper and more accurate analysis of sentiments in text.

III. Methods

A. Objectives
The primary objective of this research is to assess

the efficacy of a Bi-LSTM model, augmented with dropout
and L2 regularization, in performing sentiment analysis on
the IMDB movie review dataset. This study aims to
investigate:

1. Objective ID: R01

● Significance for Research: To evaluate the ability
of Bidirectional Long Short-Term Memory
(Bi-LSTM) network, enhanced with dropout and
L2 regularization techniques, in classifying
sentiments as positive or negative within the IMDB
movie review dataset.

● Significance for Practice: This research aims to
contribute to the development of more accurate
sentiment analysis tools, which can be beneficial
for various applications such as market analysis,
product feedback. and social media monitoring.

2. Objective ID: R02

● Significance for Research: To analyze the effects of
dropout and L2 regularization on the performance
and generalization abilities on the Bi-LSTM model

● Significance for Practice: Establishing the
practicality of using regularization techniques to
improve model performance in real-world
sentiment analysis scenarios.

B. Dataset
The IMDB Movie Review dataset, accessible via

TensorFlow’s Keras API, is a widely recognized resource in
the machine learning community, particularly for those
working on sentiment analysis projects [3]. The dataset is
composed of 50,000 movie reviews, each labeled as either

positive or negative, providing a balanced binary
classification task. Specifically, the dataset is evenly divided
into town main parts: a training set and a test set, each
containing 25,000 movie reviews. This division ensures that
models can be trained on one subset of the data and
accurately evaluated on a separate subset that the model has
not seen during the training process. This balanced nature of
the dataset, with equal numbers of positive and negative
reviews in both training and test sets, as seen in Figure 1 and
Figure 2 respectively, is critical for preventing training bias
and for accurately assessing model performance. The
variable dictionary is shown in Table 1.

Fig. 1. Distribution on Training Data

Fig. 2. Distribution on Testing Data



TABLE 1
Variable Dictionary

Variable Explanation

Reviews A series of words
converted into integers,
where each integer
represents a specific word
in a dictionary of the top
most frequent words.

Labels Indicates the sentiment of
the review: 0 represents
negative sentiment, 1
represents positive
sentiment.

C. Data Exploration

Before diving into the preprocessing and modeling
phase, and initial exploration of the dataset was undertaken
to understand its characteristics and to strategize the most
effective preprocessing steps:

● Review Length Analysis: Determining the
distribution of the review lengths to identify the
necessity of padding the reviews for uniform input
size as seen in Figure 3.

● Word Frequency Distribution: Examining the
frequency of word occurrences within the reviews
to decide on the ‘num_words’ parameter, which
limits the vocabulary size for model training as
seen in Figure 4.

● Sentiment Distribution: Verifying the balance
between positive and negative reviews across the
training and test sets to ensure the dataset;s
suitability for training binary classification models
as seen in Figure 1 and Figure 2.

The analytical approach taken prior to
preprocessing involved several steps aimed at gaining
insights into the dataset;s composition and inform the
subsequent modeling strategy:

● Quantitative Analysis: Use basic statistical
measures to understand the range and distribution
of review lengths and to analyze the sentiment
distribution across the dataset

● Qualitative Review: Sampling a subset of reviews
to get a feel for the language, sentiment expression
and variability in review content. This step was
crucial for understanding the nature of the data and
for tailoring the preprocessing steps to the dataset;s
specific needs.

● Vocabulary Inspection: Identifying the most
common words and phrases within the reviews, as
well as the occurrence of rare words, to adjust the
vocabulary size for the model and consider the
inclusion of word en=mbedding layers in the
network architecture.

Fig. 3. Distribution of Review Lengths

Fig. 4. Top 30 Word Frequencies in the IMDB Dataset



D. Preprocessing

Based on the insights gained from the data
exploration and analysis, several preprocessing steps were
identified as necessary for preparing the data for modeling:

● Text Tokenization: Converting text reviews into
sequences of integers, where each integer
represents a unique word, making the text data able
to be processed by neural networks as seen in
Figure 5.

● Sequence Padding: Ensuring all text sequences
have the same length either by padding shorter
reviews with zeros or making longer reviews a
fixed size, as determined by the review length
analysis.

● Vocabulary Capping: Limiting the model’s
vocabulary to the most frequent words to reduce
computational complexity and to focus the model’s
learning on the most relevant aspects of the data.

Fig. 5. Text Tokenization of the Original Review

Fig. 6. Sequence Padding for the Reviews

Fig. 7. Vocabulary Capping of the Top 30 Word Frequencies

E. Model Architecture
The architecture of the Bidirectional Long

Short-Term Memory (Bi-LSTM) model used in this research
is designed to optimally process and analyze textual data for
the task of sentiment analysis. The model is constructed
using the Sequential API from Keras, with layers arranged
linearly.

The first layer of our model is an Embedding layer,
crucial for converting integer-encoded vocabulary into
dense vector representations. This transformation is
constructed by the following formula:

Vi = Ew⋅ Ii (1)

where Vi represents the dense vector corresponding to the ith
input word, Ew is the embedding matrix, and Ii is the
one-hot encoded vector at the ith word. This layer captures
semantic meanings, enabling words with similar context to
have similar vector representations. Such a dense
representation is more efficient than traditional one-hot
encoding and has been shown to be effective in capturing
the semantic relationships between words [8].

To prevent overfitting which is a common problem
in training deep neural networks, a Dropout layer follows
the Embedding layer. This layer randomly sets a portion of
input units to zero during training by applying the dropout
function

D(Vi) = Vi ⋅ ri (2)

with Vi being the input vector and ri representing a binary
mask. This encourages the network to learn more robust
features that are not dependent on specific pathways,
therefore enhancing generalization [5].



At the heart of the model lies the Bidirectional
LSTM layer. Unlike recurrent neural networks (RNNs) or
unidirectional LSTMs that process data sequentially and
only retain information from the past, Bi-LSTM layer
processes the data in both forward and backward directions.
For the forward pass, the LSTM used the following
equations:

ht = ot ⊙ tanh(ct) (3)

ot = σ(Wo ⋅ [ht-1,xt] + bo) (4)

ct = ft ⊙ ct-1 + it ⊙ t𝑐
~ (5)

where ht is the hidden state, ot is the output gates activation,
ct is the cell state, ft is the forget gates activation, it is the
input/update gate’s activation, t is the cell input activation𝑐

~

at time t,Wo is the weight matrix, bo is the bias vector and
σ is the sigmoid function.For the backward pass, the LSTM
used the following equations:

h′t = o′t ⊙ tanh(c′t) (6)

o′t = σ(W′o ⋅ [h′t-1,xt] + b′o) (7)

c′t = f′t ⊙ c′t-1 + i′t ⊙ t𝑐
~

′ (8)

where the primes (') indicate the parameters and states are
associated with processing the sequence in reverse order.
This bidirectional processing allows the network to have
both preceding and subsequent context, therefore enabling it
to capture dependencies throughout the sequence more
effectively. This dual directionality is important in
understanding sentiment expressed in sentences, as the
meaning can be influenced by both preceding and following
words [9].

Finally, the model uses a dense output layer with a
sigmoid activation function, suitable for binary
classification tasks like sentiment prediction. This layer
includes L2 regularization, which penalizes the square
values of the weights through

w2j𝐿
𝑟𝑒𝑔

 =  λ
𝑗=1

𝑀

∑
(9)

where Lreg is the regularization loss, λ is the regularization
parameter, M is the number of weights,w2

j is the individual
weight values squared, and therefore constrains the model
and reduces the risk of overfitting. This type of
regularization is generally preferred over others, such as L1
regularization, as it tends to produce better results in
practice by allowing the model to use all input features but
with small weights, enhancing its generalization capabilities
[10].

The architecture is selected to address the
challenges of sentiment analysis. Embedding layers are
favoured over bag-of-words models for their efficiency and
ability to capture word semantics. Dropout layers offer a
computationally similar alternative to other regularization
methods. Bi-LSTMs are chosen for their superiority in
handling long-range dependencies and capturing context
from both directions of a sentence, a feature not present in
RNNs. Together, these layers form a robust Bi-LSTM
architecture for sentiment analysis as seen in Figure 7.

Fig.7. Bi-LSTM model architecture

F. Model Configuration

The architecture of our sentiment analysis is
predicted on a Bidirectional Long Short-Term Memory
(Bi-LSTM) network, leveraging the Keras Sequential API
for its construction. Our selection of hyperparameters is
designed to optimize the model’s performance on the IMDB
movie review dataset.



The embedding layer hyperparameters
includes‘input_dim’ which was set to 10,000 to constrain
the model to the most frequent words in the dataset,
therefore reducing computational complexity and mitigating
overfitting risks [8]. Another hyper parameter is the
‘output_dim’ which was chosen as 32, reflecting a
compromise between capturing adequate semantic detail
and limiting model complexity [11].

The dropout layer hyperparameter was set to 0.5 to
enforce redundancy in the network’s representations.
improving generalization by preventing co-adaptation of
neurons during training [5].

The Bidirectional LSTM hyperparameter was
configured with 100 units to balance the ability to model
complex dependencies with computational efficiency. The
bidirectional approach allows the model to capture context
in both directions, providing a richer representation of
sequence data [9].

The dense output layer utilizes a sigmoid activation
function, suitable for binary classification tasks. It
transforms the output of the network into a probability score
representing class membership [12]. To encourage different
weights and mitigate the risk of overfitting, an L2
regularization with a coefficient of 0.001 was incorporated
into the dense layer [10].

The Adam optimizer was selected for model
compilation for its adaptive learning rate capabilities,
facilitating faster convergence [13]. Binary cross-entropy
loss was used as the objective function, being the standard
for binary classification problems due to its probabilistic
interpretation of the data [12].

Early stopping was implemented with a ‘patience’
of 2 epochs to prevent overfitting. This approach allows
training to continue for a short period to overcome minor
fluctuations in validation loss [14].

The model was trained using the training set of
25,000 reviews, with each review padded to a length of 100
tokens. Model performance was validated on 20% of the
training data to monitor for early stopping.

The model's accuracy over the training epochs is
depicted in Figure 8. The training accuracy (blue line)
denotes an upward trajectory, suggesting the model
effectively learns from the training data. Meanwhile, the
validation accuracy (orange line) initially follows a similar
upward trend but designs to plateau, which may indicate the
beginning of overfitting to the training data. The behaviour

shows the necessity of early stopping to prevent the model
from losing its generalization on unseen data.

Figure 9 shows the model’s loss on the training and
validation sets. Consistent with expectations, the training
loss (blue line) decreases steadily, which shows the model’s
growing proficiency in predicting the training data. The
validation loss (orange line) decreases alongside the training
loss but exhibits a slight increase after the initial epochs.
This increase can be a sign of the model’s difficulty in
generalizing beyond the training set, reinforcing the
importance of regularization and early stopping techniques
used during training.

Fig. 8. Accuracy with Epochs in Training and Validation set.

Fig. 9. Loss with Epochs on Training and
Validation set.



IV. Experimental Results

A. Model Performance

Our Bi-LSTM model, augmented with dropout and
L2 regularization, was trained and evaluated on an IMDb
movie review dataset. The model achieved a test accuracy
of 83.26% which demonstrated its ability to correctly
classify reviews into positive or negative sentiment to a high
degree of accuracy. This performance shows the
effectiveness of Bi-LSTMs in capturing nuanced
expressions in text which when incorporated with
bidirectional processing and regularization techniques
mitigate overfitting and enhance generalization.

B. Analysis of Accuracy and Loss

Loss (Training): This represents the model’s error
or the difference between the predicted outputs and the
actual outputs during training. The loss decreases from
0.6790 in the first epoch to 0.1860 in the seventh epoch as
seen in Figure 10.

Accuracy (Training): This represents the metric
that measures the proportion of correct predictions that the
Bi-LSTM model makes on the dataset that it is being trained
on, which is the set of data that includes labels known to the
model. As shown in Figure 10 the training accuracy
increases from 56.22% to 92.77% as we go from the first
epoch to the seventh. This upper trend is due to the model
adjusting its weights and biases to better fit the training data.

Loss (Validation): This represents how well the
Bi-LSTM model is performing on a set of data that is not
used for training, known as the validation set. This metric
provides critical insight into how the model might perform
on data it has not seen before which indicates its
generalizability. The validation loss starts at 0.5621 and
decreases to 0.3574 by the fifth epoch before slightly
increasing to 0.4104 by the seventh epoch. A slight increase
after a decrease may indicate the beginning of overfitting;
however, the model stops training at this point due to the
implementation of early stopping at epoch 7.

Accuracy (Validation): This represents the metric
that indicates the proportion of correct predictions made by
the Bi-LSTM model on the unseen validation dataset. The
validation accuracy increases from 69.62% to a peak of
85.08% in epoch five before slightly decreasing in epochs
six and seven. The fact that the validation accuracy peaks in
the fifth epoch before slightly decreasing in epochs six and
seven could be a sign that the model is beginning to overfit
to the training data, which is why early stopping is useful to
prevent such a scenario.

Epoch Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

1 0.6790 56.22% 0.5621 69.62%

2 0.4340 80.30% 0.4193 79.90%

3 0.3258 84.46% 0.4024 83.58%

4 0.2627 89.53% 0.3620 84.96%

5 0.2273 91.19% 0.3574 85.08%

6 0.2058 92.00% 0.4365 84.02%

7 0.1860 92.77% 0.4104 83.70%

Fig. 10. Model Performance Metrics Across Epochs

C. Comparative Analysis

When compared to traditional machine learning
models and unidirectional LSTMs, our Bi-LSTM model
exhibited superior performance. Traditional methods such as
Naive Bayes and Support Vector machines have previously
been reported to achieve lower accuracy on the same dataset
[3].

The limitations in short-term memory in RNNs and
the exceptional capability of LSTMs in capturing long-range
dependencies with text make them more suited in
conducting sentiment analysis on IMDb movie reviews.
Indicated by the high levels of training and validation
accuracy as shown in Figure 10.

D. Individual Predictions

Overall our model achieved a test set accuracy of
83.26% as indicated by Figure 11, produced after averaging
the validation accuracy across all the seven epochs.

Figure 11. Test Set Accuracy and Sample Sentiment
Predictions



The last two lines in Figure 11 indicate the
individual predictions made by the model on specific
examples.

As shown in the figure, it correctly identifies one
example as ‘Positive’ and the other as ‘Negative’ which
showcases the model’s ability to classify individual
sentiment instances.

V. Conclusion

Our study embarked on the analysis of the potential
that Bidirectional Long Short-Term (Bi-LSTM) have on
sentiment analysis in terms of IMDb movie reviews. After
rigorous experimentation and analysis, we have
demonstrated that our Bi-LSTM model significantly
outperforms more traditional machine learning techniques
such as Naive Bayes as well as unidirectional LSTMs. Our
model achieved a final processing accuracy of
approximately 83.26% demonstrating its efficacy in
handling the complexities of the natural language.

Notably, our application of bidirectional
processing, incorporation of regularization techniques and
early stopping was vital in enhancing the model’s predictive
capabilities. This study reaffirmed the importance of
regularization in mitigating overfitting and increasing the
final test accuracy.

The insights gained from our findings contribute to
valuable advancements in sentiment analysis and Natural
Language Processing. Underscoring the robustness in
utilizing deep learning approaches in interpreting and
categorizing the human language.

Future work can be extended on this foundation by
exploring more advanced network architectures such as
attention mechanisms and transformers [15]. Additionally,
investigating the impact of different word embedding could
potentially improve a model’s performance. By pushing the
boundaries of what’s possible with sentiment analysis we
can find a variety of real-world uses, from social media
monitoring to market analysis and analytics, underscoring
AI’s crucial role in understanding sentiments in human
society.
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